
False Alarms
and Close
Calls
The Analysis and Verification of
Ripple20 and its Ripple Effect

by Adam Critchley & Hahna Latonick

FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io

ABOUT FINITE STATE

Finite State was founded to protect the devices that power our modern lives by illuminating the vulnerabilities
and threats within their complex software supply chains. We recognize that supply chain security is the #1
problem in cyber security today. Global software supply chains are opaque and complicated, involving countless
developers, vendors, and components. Malicious actors exploit supply chain vulnerabilities to gain access to the
networks that power our critical infrastructure and can carry out potentially devastating attacks.

Finite State defends these critical devices, networks, and supply chains by leveraging massive data analysis of
device firmware and software to provide transparency to device manufacturers and their customers - enabling
them to understand and mitigate their risks before they are compromised.

linkedin.com/company/finitestate
twitter: @FiniteStateInc

Special thanks to Sam Lerner, Octavio Pimentel, Stephanie Pasamonte, Edwin Shuttleworth, and Alex Beigel at
Finite State and to Reid Wightman, and Kate Vejda at Dragos.

** Please note that this paper was updated on 10/21/2020 to reflect additional research, the details of which can be
found in our article at https://finitestate.io/2020/10/12/the-aftershock-of-ripple20

https://www.linkedin.com/company/finitestate/
https://twitter.com/FiniteStateInc
https://finitestate.io/2020/10/12/the-aftershock-of-ripple20/

1FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Ripple20 is a collection of 19 CVEs disclosed by JSOF
that affect the Treck TCP/IP stack. It has proven to
be one of the most widespread vulnerabilities and is
elusive to traditional detection techniques due to the
many variants spread out over many years of releases.
According to JSOF, this series of vulnerabilities affects
hundreds of millions of devices and includes multiple
remote execution code vulnerabilities, which would
allow an attacker to gain complete control over a
target device remotely.1

Given the serious nature of the vulnerabilities and
how they would affect our industry partners, Finite
State chose to look into CVE-2020-11896, and CVE-
2020-11901, which were the two primary Remote
Code Execution (RCE) vulnerabilities presented in the
disclosure. They also have the highest CVSS scores of
the series. CVSS uses exploitability, scope, and impact
metrics to calculate a score between 0 and 10. The
scores for the two RCE vulnerabilities were ranked as
Critical impact with scores of 10.0 and 9.0 respectively.

Our premier security research team was able to
overcome the hurdles to verifying the effects of the
two RCE vulnerabilities using a method that we call
Focused Emulation. Focused Emulation quickly tests
all versions of the device firmware for multiple devices
that contain the aforementioned Ripple20 CVEs. This
technique also avoids the disruptive nature of testing
on a deployed device and the potential for inaccuracy
in passive network traffic detection.

Our analysis corpus consisted of 20 firmware images
with release dates spanning 2014-2020, different
architectures (x86, ARM, MIPS, Coldfire, and SuperH),
and operating systems (Quadros 2014/2017, HP OS
2020, Net OS 2017, and GreenHills 2019). We also
leveraged JSOF’s approach for unpacking HP firmware
during our analysis.2

What we found is that the CVSS scores for the two
devices that JSOF has publicly demonstrated exploits
against reflect the scores listed for CVE-2020-11896

and CVE-2020-11901, both of which result in an
RCE. However, when evaluating these CVEs against
other devices the expected effect varied. For CVE-
2020-11896, we have not observed any RCE effects
other than those on the devices for which JSOF
has published their findings, and have been able
to confirm our results in our clients’ firmwares. For
CVE-2020-11901, we were able to demonstrate a
heap overflow on the Digi Connect ME 9210 and
the HP OS, which could provide the opportunity
for remote code execution (RCE). Our research has
shown, however, that most devices we tested that
utilize the Treck stack are not affected by the disclosed
remote code execution vulnerabilities due to the
device’s configuration, bringing into question the true
widespread impact of Ripple20.

The discrepancies between our results and
those originally published underscore a critical
need for verification of vulnerabilities across
multiple versions of affected devices, but they
also indicate that the system for reporting and
scoring vulnerabilities may, itself, need to be
reworked.

The Ripple20 vulnerabilities are real vulnerabilities that
show up in a number of ways—we don’t dispute that.
In fact, we don’t see our results as being in opposition
to JSOF’s research but rather as an expansion of it,
which would not have been possible without the
important work that they put in. In this paper, we are
disputing the severity of those CVEs, but ultimately
the issue is more systemic. The CVE, CPE, and CVSS
systems simply don’t work for embedded devices, and
as a security community we need to find more scalable
ways to verify and respond to reported vulnerabilities.
In this paper we outline our approach to doing just
that.

EXECUTIVE SUMMARY

1 https://www.jsof-tech.com/ripple20
2 https://www.jsof-tech.com/unpacking-hp-firmware-
updates-part-1/

https://www.jsof-tech.com/ripple20

2FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Verifying the Ripple20 RCE Vulnerabilities

The Treck stack is distributed as source code, giving
OEMs the flexibility to modify and select pieces of the
code that enable stack functionality. The stack can also
target any architecture and device which significantly
increases the analysis complexity. Consequently,
security teams are required to manually test each
device for the possible vulnerability, which is both
disruptive and unscalable.

The Ripple20 vulnerabilities are believed to affect
a wide range of devices used in every industry.
Vendors have released the Treck stack in devices for
applications such as medical, transportation, industrial
control, enterprise, energy, telecom, retail and
commerce which consequently use a diverse range of
processors depending on the size, weight, and power
constraints of the deployment.

Security teams for both device manufacturers and
asset owners have been scrambling to determine
whether their devices are affected.

Finding the Right Approach

Rather than relying upon inaccurate network scans,
Finite State leveraged our advanced firmware analysis
platform to look inside the firmware packages and
binaries within them to detect the presence of the
vulnerable Treck stack within the assembly code itself.

Finite State has identified the Treck stack in devices
utilizing Coldfire, MIPS, ARM, x86, and SuperH
processors. Further adding to the complexity of the
Ripple20 detection is that updates to the stack can be
incorporated piecemeal into the device’s source code.
Thus, the implementation of the stack for a device
will likely be a combination of different versions of
the stack. This means that the typical, naive approach
of searching for a version string or matching a YARA
signature to detect the Treck stack will often be
incorrect, as sometimes the version string is inaccurate
or not even present in the final firmware.

The Ripple20 vulnerabilities can lead to different
effects, such as remote code execution, information
disclosure, and denial of service (DoS). Each of these
vulnerabilities are important to address and shouldn’t
be ignored; however, the two remote code execution
vulnerabilities, CVE-2020-11901 and CVE-2020-11896,
are the most significant of the set due to their CVSS
scores of 9.0 and 10 respectively. Of the series, these
two CVEs act as enablers to the rest; in other words,
without these two CVEs, attackers would be unable to
compromise and take full control of the target devices.
Thus, Finite State first focused on verifying the severe
effects of these two CVEs in an attempt to address the
most critical threats facing our customers and industry
partners.

3FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Summary of Key Findings

• Our research has shown that most devices we tested that utilize the Treck stack are not affected by the
disclosed remote code execution vulnerabilities, bringing into question the true widespread impact of
Ripple20

• When verifying the impact on CVEs on other devices, the impact of the CVEs have ranged from Denial of
Service to Heap Overflow. The CPE vector should be specific to the devices that were affected, so that the
CVSS score is more accurate.

• In discussions with our team, Treck confirmed that exploitation results for CVE-2020-11896 were different
based on an error checking macro that vendors could choose to enable or not. Defining the error checking
macro enabled the “guard code” that was discussed and depicted in our whitepaper. All devices we’ve
encountered, except for the Digi Connect ME 9210, had the guard code. Additionally, another macro could
be enabled to support scattered data from the device driver, which completely removes the vulnerable
code from the final binary.

• For CVE-2020-11901, we developed a new approach to demonstrate a heap overflow on the Digi Connect
ME 9210 and the HP OS, which could provide the opportunity for remote code execution (RCE).

• Exploitation of CVE-2020-11901 requires DNS to be enabled for the Treck stack. For the firmware that we
analyzed, DNS was not enabled and, therefore, the vulnerable code was not present. Even when it was
enabled, the Treck DNS code imposed additional constraints which had to be overcome for successful
exploitation. Again, the presence, usability, and reachability of the DNS code will vary based on device
configurations.

Figure 1. Summary of exploit results on different Treck variants.

*The DNS feature required for exploitation was not supported.

CVE-2020-11896 CVE-2020-11898 CVE-2020-11901

Quadros 2017 No Effect No Effect N/A*

Quadros 2014 DoS DoS N/A*

HP OS 2020 DoS DoS Heap Overflow,
Possible RCE

Net+OS 2017 RCE Information Leak Heap Overflow,
Possible RCE

GreenHills 2019 DoS DoS N/A*

4FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Differing Approaches, Differing Results:
Why it Matters

JSOF’s approach to finding and reporting the Ripple20
vulnerabilities was fairly typical: they discovered a
vulnerability in a device and ascertained that it was in
the Treck stack. They then found other vulnerabilities
in that version, and one other version of the stack, and
proceeded to publish those vulnerabilities under the
assumption that they affected all versions of Treck. As
our research shows, that was not the case.

This is significant because publication of the Ripple20
white paper resulted in widespread, ineffective security
testing and patching across all of these devices,
despite the fact that the two remote code execution
vulnerabilities had only been demonstrated on two
products.

The inconsistencies between our results and the
effects that were initially reported by JSOF highlight

the need to verify vulnerabilities that are released to
the public. The results of verification, in this instance,
drastically change the scope and nature of the
necessary responses by security teams.

Unfortunately, the approach demonstrated by JSOF
is a conventional one. The discrepancies in their
report versus the actual effects are merely a symptom
of a larger, systemic issue with the way we analyze
and report vulnerabilities in connected devices. As
researchers and cybersecurity experts continue to
uncover wide spread vulnerabilities like those in
the Ripple20 series, it is essential that we are able
to quickly and accurately verify these issues across
multiple versions of affected devices.

Our approach, detailed in the section below, provides
one method for scalable vulnerability verification.

5FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Method: Focused Emulation

Ripple20 has reemphasized the need for automated
vulnerability detection and verification solutions that
are accurate, reliable, scalable, and fast. Such tools
and methods must also be able to analyze binaries
without source code which is usually unavailable when
evaluating embedded firmware. Static binary analysis
has several limitations where it is manually intensive,
time consuming, hard to scale, and can lead to false
positives. Techniques like signature-based detection
(e.g., YARA), instruction matching, or function hashing
may result in false negatives and would be ineffective
at detecting vulnerable Treck functions because their
composition can drastically vary between different
platforms, architectures, and tool chains.

To overcome these major obstacles, our research
team used their extensive years of collective
expertise in reversing, emulation, and vulnerability
research to develop a novel capability, which we call
Focused Emulation, a comprehensive automated
solution capable of detecting and verifying Ripple20

vulnerabilities in target firmware. It allows us to
emulate the firmware, execute its binaries and
services, exercise the necessary code paths, and
test for the actual vulnerability. To ensure successful
emulation, the firmware must first undergo automated
preprocessing which includes symbol enrichment,
function identification, service identification, and
initialization.

Using knowledge gained from reversing various
firmware with the Treck stack, we identified a way to
fully initialize the stack using Focused Emulation for
all the potentially vulnerable firmware of interest.
Then we supply the malicious packet to the stack
for processing and observe the execution state of
the firmware to determine whether the stack was
vulnerable and the resulting effect. Focused Emulation
operates at scale, speed, and efficacy, guaranteeing
a high level of confidence with very few to no false
positives. It is also fully integrated into our online cloud
platform for use today.

6FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Results

Demystifying CVE-2020-11896

Finite State has 20 firmwares with the Treck TCP/IP
stack from 5 vendors with multiple versions for most
devices. During our reversing efforts, we noticed
differences between the vulnerable code present in
our firmware and the Digi Connect 9210 firmware from
the JSOF whitepaper. Further adding to the confusion
was that many vendors were stating the devices for
these firmware were vulnerable to Ripple20.

Obviously to get to the bottom of this mystery we
needed to exercise the vulnerabilities directly on

the firmware to confirm their effect. Armed with the
knowledge gained while reversing the stack, we set
out to emulate those 20 firmware. We finished the
emulation effort for those firmware after rigorous
testing and crafted the malicious packet for CVE-2020-
11896 with aid from the JSOF whitepaper. We were
only rewarded, however, with more questions. When
throwing CVE-2020-11896 at those 20 firmwares,
we observed that a special check was guarding the
truncation code (see Guard Code Figures 2, 3 below),
preventing remote code execution. The presence of
this guard code is dependent upon whether or not an
error checking macro is defined.

Figure 2.
Quadros 2014 based firmware vulnerable to DoS variant of CVE-2020-11896 (Guard Code in green highlight)

Figure 3.
Net+OS 2020 on Digi Connect ME 9210 with Guard Code in tfIpIncomingPacket which mitigates the CVE effect

7FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Results

However, even though the RCE was prevented, the alternate branch on that check for some firmware called the
fatalLogger function (the actual name may vary) which commonly executed an infinite loop that halted packet
processing and effectively led to a DoS condition (see Figure 4 below).

Emulation was so effective at detecting CVE-2020-11896 and its effect that we decided to integrate it into our
online platform under our Focused Emulation capability. Since then, we have also added CVE-2020-11898, CVE-
2020-11901, and are developing other CVEs as prioritized by customer needs.

Figure 4. fatalLogger function causing a DoS for CVE-2020-11896

Figure 5. Unpatched Digi Firmware Vulnerable to RCE variant of CVE-2020-11896 (no Guard Code)

Since we suspected that none of our firmware contained the RCE variant of the vulnerable code, we decided to
look at a Digi Connect ME 9210 which was detailed in the JSOF whitepaper. Indeed, we found that the suspected
vulnerable code (see Figure 5 below) existed in the Digi firmware and then proceeded to emulate it. Finally,
we landed CVE-2020-11896 as an RCE on the emulated firmware. Afterwards we re-confirmed that the same
malicious packets only caused a DoS, or effects other than RCE, for the other firmware that contained the guard
code with the oldest firmware release dating back to 2014.

8FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Results

Examining the Impact of CVE-2020-11901

CVE-2020-11901 is perhaps the most interesting set
of vulnerabilities in Ripple20. JSOF certainly thought
so, making it the subject of their BlackHat and DefCon
presentations. We were surprised that their reporting
didn’t mention the testing of both CVEs on the same
device, so we decided to investigate this CVE on the
Digi Connect ME 9210.

DNS must be enabled in the Treck stack for the device
to be affected by CVE-2020-11901 vulnerabilities.
Using JSOF’s CVE-2020-11901 whitepaper as a guide
we set out to test the three vulnerabilities against the
Digi and our other firmware. Preliminary reversing of
the firmware revealed that none of our firmware had
the code for the “bad RDLENGTH” vulnerability, but
they did have code for the “Read Out-of-Bounds” and
“Integer Overflow” vulnerabilities. This inspired our

team to perform a deeper evaluation of CVE-2020-
11901 on our firmware.

Examining the DNS response handler, tfDnsCallback,
we saw that the vulnerable pair of functions
(tfDnsExpLabelLength and tfDnsLabelToAscii) are
only called when the DNS record type requested was
either MX (0xf) as shown in Figure 6 or PTR (0xc) as
shown in Figure 7. Using the JSOF whitepaper as a
guide, we crafted the malicious packets and observed
their propagation through tfDnsCallback. Using
Focused Emulation, we were able to visually observe
the code paths taken by the packets which drastically
reduced the exploit debugging effort. In our Focused
Emulation development roadmap, we plan to use
code path exploration to automatically modify the
malicious packet for variants of the Treck stack. For
example, code path exploration can be leveraged
to automatically exploit stacks which randomize the
Transaction ID.

Figure 6. MX record handling in the Treck stack

Figure 7. PTR record handling in the Treck stack

9FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Results

Analysis revealed that both the Digi and other
firmware were vulnerable to both the “Read Out-of-
Bounds” and “Integer Overflow” vulnerabilities. The
read out-of-bounds leads to an information leak when
the answer label is not null terminated in the DNS
response. This was straightforward to implement and
easily verified within our Focused Emulation solution.
However, unlike the read out-of-bounds, the integer
overflow did not immediately yield a heap overflow as
suggested by JSOF’s whitepaper. As a result, we had to
craft a new exploit as detailed in our follow-up article.3
We then evaluated the new exploit using Focused
Emulation and verified that the heap overflow can be
achieved on our firmware, providing the opportunity
for possible RCE.

From the 20 firmware we emulated, we found only two
had the functionality required for exploitation of CVE-
2020-11901. This is quite surprising because vendors

had announced their devices as being vulnerable to
CVE-2020-11901 when in reality their device firmware
was not affected since it wasn’t configured to support
DNS. During our investigation, we also noticed that
Aruba Networks listed each CVE and the specific
effect on their devices.4 Their PSA confirmed that
none of the Ripple20 CVEs had an RCE effect on their
devices. All of this suggests more analysis should be
performed to verify the effect of Ripple20 CVEs as
device configurations may dramatically reduce the
actual security impact compared to what was originally
reported in the vulnerability disclosure.

3 https://finitestate.io/2020/10/12/the-aftershock-of-
ripple20/
4 https://www.arubanetworks.com/assets/alert/ARUBA-
PSA-2020-006.txt

https://finitestate.io/2020/10/12/the-aftershock-of-ripple20/
https://finitestate.io/2020/10/12/the-aftershock-of-ripple20/
https://www.arubanetworks.com/assets/alert/ARUBA-PSA-2020-006.txt
https://www.arubanetworks.com/assets/alert/ARUBA-PSA-2020-006.txt

10FALSE ALARMS AND CLOSE CALLS | Critchley & Latonick finitestate.io |

Conclusion

It is important to hold everyone in the cybersecurity
community accountable. That’s one of the things that
this report is attempting to do.

Verifying the true impact of vulnerabilities like those
found in Ripple20, while difficult, is not impossible.
That the approach taken by JSOF was not atypical
indicates that our vulnerability reporting and scoring
system itself is flawed. Again, the vulnerabilities that
JSOF reported are very real and high impact for the
devices that they tested against; however, these
vulnerabilities being correlated to a “version” of the
Treck stack and reported via NVD, ICS CERT, etc., led
to incorrect assumptions which fueled a misguided
community response. The impact and presence of the
vulnerable condition was not tested on the devices
which were deemed to be affected.

As some vendors independently from Treck attempted
to develop patches for all of the devices that were
presumed to be affected by this highly publicized
vulnerability, we saw two problems: devices that were
unaffected were patched unnecessarily, and due to
these vendors not adequately verifying their patches,
new vulnerabilities were introduced in the process
(which our team has identified, and which we will
detail further after the responsible disclosure process
is complete). These unintended consequences are
completely avoidable if security teams are able to
verify these vulnerabilities before attempting to patch
them. Most product security teams, however, lack the
proper tooling to be able to verify the effects of these
vulnerabilities and patches, which is why it’s crucial that
we have a system in place that can do so quickly and
accurately to prevent this kind of response.

Such tooling would also enable product security
teams to properly evaluate CVSS scores and their
true severity. CVSS uses scope, exploitability metrics,
and impact metrics to calculate a base score. This
is primarily within the context of the vulnerable and

impacted components of the device. Organizations
are encouraged to supplement the Base score with
additional information or metrics specific to their use
of the vulnerable product to produce a severity score
more accurate for their organizational environment.
This, however, is outside the scope of CVSS.

As a community we are falling short on vulnerability
management for connected devices, and we have
to find more scalable ways to verify and respond
to vulnerabilities in those devices. We cannot just
rely on CVSS, vendor reports, or even security
researchers. Users of these devices need to have
better risk analysis tools in place in order to make
better informed risk decisions. Device manufacturers
must have the ability to test their device firmware and
security patches at scale before releasing them to their
customers.

It is essential that we also create a better system or
metric to measure the severity and magnitude of IoT
and connected device vulnerabilities and their impact
in the real-world. This system must require greater
precision and accuracy in writing CVEs. The two RCE
vulnerabilities in the Ripple20 disclosure created
false alarms in large part because of how vague and
broad they were even though they were each only
demonstrated against one representative device.

There is an obvious challenge here. While the
specificity of CVEs should help to inform and educate
vendors, there must still be a balance between
revealing too much and allowing attackers to leverage
that information.

Still, we as a community need to do our due
diligence—on what’s being reported, how it’s reported,
and what’s being done about it—much better than we
are at present. This would allow us to better prevent,
manage, and mitigate future ripple effects in security
and the supply chain.

